Đề cương ôn tập học kì II môn Toán Lớp 8 - Năm học 2019-2020 - Trường THCS Thị Trấn 2
Bạn đang xem tài liệu "Đề cương ôn tập học kì II môn Toán Lớp 8 - Năm học 2019-2020 - Trường THCS Thị Trấn 2", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề cương ôn tập học kì II môn Toán Lớp 8 - Năm học 2019-2020 - Trường THCS Thị Trấn 2
Trường THCS Thị Trấn 2 Trọng tâm ơn tập – Mơn: Tốn 8 Bài 3: (1,0 điểm) Một người đi xe máy từ A đến B với vận tốc trung bình 45km/h, khi từ B về A người đĩ chỉ đi với vận tốc trung bình 30km/h mất tổng cộng 5giờ. Tính độ dài quãng đường AB. Bài 4: (1,0 điểm) Một khu vườn hình chữ nhật cĩ chiều dài hơn chiều rộng 25m, chu vi bằng 250m. Tính diện tích khu vườn. Bài 5: (3,0 điểm) Cho tam giác ABC vuơng tại A, đường cao AH. a/ Chứng minh: ∆ABC đồng dạng ∆HAC. b/ Chứng minh: AB.AC = BC.AH c/ Biết AB=3cm; AC=4cm. Tính BC, AH và HC. ----------------------Hết----------------------- ĐỀ 3 Bài 1: Giải các phƣơng trình sau: (3điểm ) a) 5x – 15 = 3x – 7 x 2 2x 3 b) x 3 3 4 x 1 x 3x 1 c) x 3 x 3 x 2 9 Bài 2: Giải bất phƣơng trình và biểu diễn trên trục số: (1điểm) x 4 2x 5 x 3 x 2 3 4 Bài 3: (1điểm) Một ơ tơ đi từ A đến B với vận tốc là 50km/h, rồi đi từ B về A với vận tốc lớn hơn vận tốc lúc đi là 10km/h. Tính quãng đường AB biết thời gian cả đi lẫn về là 4 giờ 24 phút. Bài 4: (1điểm) Một hình chữ nhật cĩ chu vi là 56m, nếu tăng chiều rộng 2m và giảm chiều dài 3m thì diện tích khơng thay đổi. Tính diện tích của hình chữ nhật lúc đầu. Bài 5: (1điểm) Để lập đội tuyển năng khiếu về bĩng rổ của trường thầy thể dục đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ được ném 10 quả bĩng vào rổ, quả bĩng vào rổ được cộng 4 điểm; quả bĩng ném ra ngồi thì bị trừ 2 điểm. Nếu bạn nào cĩ số điểm từ 22 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải ném ít nhất bao nhiêu quả vào rổ? Bài 6: (3điểm) Cho ∆ABC vuơng tại A cĩ đường cao AH (H thuộc BC) a) Chứng minh: ∆ABH ∆CBA , từ đĩ suy ra AB2 = BH . BC b) Chứng minh: AH2 = BH. CH c) Cho AB = 12cm; AC = 16cm. Tính BC; AH d) Từ H vẽ HE ⏊AC. Gọi M là giao điểm của AH và BE; I là giao điểm của CM và HE. Chứng minh I là trung điểm HE. ----------Hết 2 Trường THCS Thị Trấn 2 Trọng tâm ơn tập – Mơn: Tốn 8 ĐỀ 5 Bài 1. (3 điểm) Giải các phương trình sau: 1) 3 x 5 2 x 3 4 x 2 9 2xx 2 3 2) 15 5 10 1 3) x 32 2 2 1 2x 13 4) x 3 x 2 ( x 3)( x 2) Bài 2. (1 điểm) Giải bất phương trình và biểu diễn tập hợp nghiệm trên trục số: 2xx 5 2 x+3 0 15 65 Bài 3. (1 điểm) Nhà bạn Bình cĩ hồ cá là một bể hình hộp chữ nhật cĩ chứa nước với độ sâu của nước là 6dm, đáy bể cĩ chiều dài 12dm và chiều rộng bằng 2 chiều dài. Hỏi hồ 3 cá cĩ thể tích nước là bao nhiêu? Bài 4. (1 điểm ) Lúc 6 giờ sáng, Ba bạn An đưa bạn đi học từ nhà đến trường bằng xe máy, đi được nửa quãng đường với vận tộc 15 km/h thì nghỉ 12 phút để ăn sáng. Để đến trường đúng giờ quy định, bố bạn An phải tăng vận tốc thêm 15km/h trên nửa quãng đường cịn lại. Hỏi bạn An đến trường lúc mấy giờ ? Bài 5. (4 điểm) Cho ABC nhọn cĩ hai đường cao AD và BE cắt nhau tại H. 1) Chứng minh: CAD đồng dạng CBE 2) Chứng minh: HA.HD = HB.HE 3) Tia CH cắt AB tại K. Chứng minh: AEK ABC . 4) Kẻ DM AB tại M, từ M vẽ đường thẳng song song với KE cắt cạnh AC tại N. Chứng minh: DN AC. HẾT ĐỀ 6 Câu 1: (3,5 điểm) Giải các phương trình sau: 4 Trường THCS Thị Trấn 2 Trọng tâm ơn tập – Mơn: Tốn 8 ĐỀ 7 Bài 1: (3,5 điểm) Giải phương trình: a) 3xx 2 5 12 b) xx 2 2 3 0 3x 4 x x 1 c) 5 6 2 x 7 7 56 d) x 4 x 4 x2 16 e) 2xx 3 3 Bài 2: (2 điểm) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 5xx 3 2 15 b) x x 12 x x 2 Bài 3: (1 điểm) Hai người đi xe máy khởi hành c ng một lúc đi từ A đến B. Người thứ nhất đi với vận tốc 40 km/h, người thứ hai đi với vận tốc 60 km/h nên đã đến B trước người thứ nhất 1 giờ. Tính quãng đường từ A đến B. Bài 4: (1 điểm) Cho hình vẽ bên biết AB // EF; AF = 45,4 m; FC = 34,2 m và EF = 18,6 m. Em hãy tính chiều rộng AB của khúc sơng. (làm trịn đến chữ số thập phân thứ nhất) Bài 5: (2,5 điểm) Cho ∆ABC vuơng tại A, đường cao AH. a) Chứng minh: ∆ABC đồng dạng ∆ HBA từ đĩ suy ra AB.AC = AH.BC b) Chứng minh: AH2 HB.HC c) Phân giác ABC cắt AH và AC lần lượt tại I và K. Chứng minh: AI2 = IH.KC ------------- HẾT ----------- 6 Trường THCS Thị Trấn 2 Trọng tâm ơn tập – Mơn: Tốn 8 3x 2 7x 9 x 1 b) x 2 6 3 Bài 3) (1.5 điểm). Giải bài tốn bằng cách lập phương trình: Một xe máy đi từ Thành phố Hồ Chí Minh đến Thành phố Cần Thơ với vận tốc 50 km/h. Lúc trở về thì đi với vận tốc lớn hơn vận tốc lúc đi 18 km/h nên thời gian về ít hơn thời gian đi 54 phút. Tính độ dài quãng đường từ Thành phố Hồ Chí Minh đến Thành phố Cần Thơ. Bài 4) (0.5 điểm). E Bĩng (AC) của một cột điện (AE) trên mặt đất dài 5m. C ng lúc đĩ một cột đèn giao thơng (BD) cao 2,5m cĩ bĩng dài (BC) 2m. Tính chiều cao của cột điện (AE). D 2,5 m 2 m C A Bài 5) (3 điểm). Cho ABC nhọn (AB < AC) đường cao BE và CF cắt nhau tại H. B 5 m a) Chứng minh ABE ~ ACF và viết tỷ số đồng dạng. b) Chứng minh AEF ~ ABC và BEˆF BCˆ F. c) Gọi K là trung điểm của HC. Chứng minh FAC ~ FHB và FA . FB = FK2 – EK2. - HẾT - 8
File đính kèm:
- de_cuong_on_tap_hoc_ki_ii_mon_toan_lop_8_nam_hoc_2019_2020_t.pdf